35kV110kV高压开关柜中电场的有限元分析与研究

35kV110kV高压开关柜中电场的有限元分析与研究[20191213104937]
摘要
高压开关柜结构简单、维护工作量小、适合于频繁操作等,因此受到用户的欢迎。更由于我国电力系统的不断发展,高压开关柜的应用也越来越普遍。高压开关柜的性能的好坏对电网的安全生产和可靠性供电起着重要作用。但在实际应用中,由于开关柜故障率比较高,尤其在绝缘方面,所以,对高压开关柜的优化是很重要的。现在的高压开关柜基本都是金属封闭开关柜,断路器、开关等元器件均密封在 SF6气室内,由于SF6气室中的电场分布极不均匀,所以,各个主要的元器件在静电场中的电场强度分布对高压开关柜的性能有很大的影响。
由于计算机模拟电场求解中,基于有限元软件(如 ANSOFT-MAXWELL)的方法简便易行、适用于多种介质和较高的计算效率,已经成为电磁场问题求解的主要方法之一。本文对 100kv的高压开关柜内部电场进行 3D建模仿真,通过分析其在静电场的电场强度分布情况,对电场强度较大的关键结构进行优化设计,本文主要对比较重要的绝缘子进行分析。从而根据得到的分析结果对气箱内绝缘结构进行进一步的优化设计,改善其电场分布,使得电场的场强分布均匀,以便提高产品的性能及可靠性,为新产品的研发提供指导依据。
摘要····························································································I
 查看完整论文请+Q: 351916072 
关键字:字高压开关柜 电场强度有限元
目录
ABSTRACT················································································II第1章 绪论·················································································1
1.1本课题研究的背景及意义···························································1
1.2 高压开关柜简介·······································································1
1.3 开关柜常见故障·······································································2
1.4 开关柜的发展现状····································································3
本章小结······················································································5
第二章 电场计算理论基础 ··································································6
2.1电磁场问题数值计算的几种重要方法············································6
2.2 有限元法(Finite-Element Method)介绍····································6
2.3 有限元法(Finite Element Method)原理····································7
2.4 有限元法(Finite-Element Method)的基本思想···························7
2.5 有限元法(Finite Element Method)具体求解过程························7
本章小结······················································································8
第三章 基于有限元思想的 ANSOFT软件···················································9
3.1 有限元软件介绍·······································································9
3.2 ANSOFT-MAXWELL有限元软件介绍·················································9
3.3 ANSOFT-MAXWELL 的功能····························································10
3.4 ANSOFT-MAXWELL 3D 仿真步骤·····················································10
3.5 ANSOFT-MAXWELL 3D 实例分析·····················································12
本章小结······················································································16
第四章 基于Maxwell的高压开关柜优化················································17
4.1 Maxwell优化概述···································································17
4.2绝缘子的介绍········································································18
4.3绝缘子的Maxwell 3D建模与仿真···············································20
4.4参数化分析(Parametric Analysis)优化法································26
本章小结····················································································34
第五章 总结与收获 ··········································································35
总结·····························································································35
参考文献·······················································································36
致谢·····························································································38
附图、附表····················································································39
附录1绝缘子solid works图·······························································39
附录2绝缘子目标优化设结果曲线······················································39
附表1绝缘子目标优化设结果表·························································40
英文翻译························································································41
第一章
1.1本课题研究的背景及意义
开关柜作为一种接受、分配网络电能及控制、保护和监测用电设备等用途成 套开关设备而广泛应用于各变电所(站)。随着国家电网的快速发展和高压开关柜 的广泛使用,高压开关柜事故也屡见不鲜,事故主要表现在绝缘事故、载流故障、 机械事故、误动事故和拒动事故等,其中绝缘事故尤为突出。我国在产品的开发研制中,虽然已普遍使用计算机技术,但对产品的设计和开发扔停留在依靠经验阶段,使设计周期加长,设计成本增加。另外,虽然有一些厂家已从国外引进技术,但只能引进硬件技术,缺乏对软件的引进。引进的技术或产品难以得到很好的应用,从而就难以在此基础上进行创新和开发。因此,本文从基础研究开始,开发我国自己的设计方法,加快我国对高压开关柜的研究和开发。这对我国相关行业有很大的意义。
随着控制装置向计算机化、网络化、智能化,以及保护、控制、测量和数据通信一体化方面的快速发展,对于高压开关柜的研究也是百家争鸣,有的对其触头温度进行在线监测,有的对其触头温度场进行数值仿真,但对其电场的仿真研究,文献较少。现仅有文献也主要是针对高压开关柜中接地开关相间电场或母线附近电场进行局部分析的。再进一步的也有一些,以10kv配电系统高压开关柜为研究对象,就当前市场上主流中置柜运转车结构特点及优缺点加以分析,提出消除柜体导轨与运转车导轨之间间隙并特别设计了锁定装置的改进方法进行探讨。也有以KYN28一I2(Z)型高压开关柜为例,应用多物理场耦合仿真软件COMSOL Multiphysics的AC/DC模块,建立高压开关柜的三维电磁场数值 仿真模型,采用准静态电磁场求解方法,计算得到了相线加载电压为12 kV50 Hz的标准工况下开 关柜内电磁场强度的分布:矩形铜制相线角部的电场和磁场强度最大,相线间的电场和磁场强度稍小。本课题的研究,旨在通过全场域的电场数值计算,得到优化的内部结构,使得电场分布更加均匀,提高柜内的绝缘性能,以此指导开关柜的整体优化设计。
1.2开关柜简介
高压开关柜是指用于电力系统发电、输电、配电、电能转换和消耗中起通断、控制或保护等作用,电压等级在3.6kV~550kV的电器产品,高压开关制造业是输变电设备制造业的重要组成部分,在整个电力工业中占有非常重要的地位。
图1-1开关柜结构图
图中:A---母线室 B---断路器手车室 C---电缆室 D---继电器仪表室
1-泄压装置;2-外壳;3-分支小母线;4-母线套管;5-主母线;6-静触头;7-触头盒;8-电流互感器;9-接地开关;10-电缆;11-避雷器;12-接地母线;13-装卸式隔板;14-隔板(活门);15-二次触头;16-断路器手车;17-加热装置;18-可抽出式水平隔板;19-接地开关操作机构;20-控制小线槽;21-电缆封板。
开关柜的柜体为组装式结构,开关柜不靠墙安装。柜体分四个单独的隔室:手车室、主母线室、电缆室、继电器仪表室。柜体外壳防护等级IP42,各小室间防护等级IP2X。
1.3开关柜常见故障
分析其原因高压开关柜故障原因,多发生在绝缘、导电和机械方面。
(一)拒动、误动故障
这种故障是高压开关柜最主要的故障,其原因可分为两类。一类是因操动机构及传动系统的机械故障造成,具体表现为机构卡涩,部件变形、位移或损坏,分合闸铁芯松动、卡涩,轴销松断,脱扣失灵等。另一类是因电气控制和辅助回路造成,表现为二次接线接触不良,端子松动,接线错误,分合闸线圈因机构卡涩或转换开关不良而烧损,辅助开关切换不灵,以及操作电源、合闸接触器、微动开关等故障。
(二)开断与关合故障
这类故障是由断路器本体造成的,对少油断路器而言,主要表现为喷油短路、灭弧室烧损、开断能力不足、关合时爆炸等。对于真空断路器而言,表现为灭弧室及波纹管漏气、真空度降低、切电容器组重燃、陶瓷管破裂等。
(三)绝缘故障  
绝缘水平是要正确处理作用在绝缘上的各种电压(包括运行电压和各种过电压)、各种限压措施、绝缘强度这三者之间的关系。力求使产品做到既安全又经济,得到最佳的经济效益。在绝缘方面的故障主要表现为外绝缘对地闪络击穿,内绝缘对地闪络击穿,相间绝缘闪络击穿,雷电过电压闪络击穿,瓷瓶套管、电容套管闪络、污闪、击穿、爆炸,提升杆闪络,CT闪络、击穿、爆炸,瓷瓶断裂等。
(四)载流故障
72~12KV电压等级发生的载流故障主要原因是开关柜隔离插头接触不良导致触头烧融。
(五)外力及其他故障

版权保护: 本文由 hbsrm.com编辑,转载请保留链接: www.hbsrm.com/jxgc/zdh/4949.html

好棒文